This is the python code for logisticRegression using Preceptron Trick but not working.. im having doubt in finding coefficients..please check and correct the code.
class LogisticRegression:
def __init__(self,learning_rate=0.01,epochs=1000):
self.epochs=epochs
self.learning_rate=learning_rate
self.coef_=0
self.intercept_=0
def fit(self,x,y):
x=x.copy()
y=y.copy()
import numpy as np
x.insert(loc=0,column='ones',value=np.ones(x.shape[0]))
w = np.ones(x.shape[1])
for i in range(self.epochs):
j=np.random.randint(0,x.shape[0])
y_hat = self.step(np.dot(x.iloc[j,:], w))
w=w+(y.iloc[j,]-y_hat)*x.iloc[j,:]
self.coef_=-w[1:x.shape[1]]/w[x.shape[1]-1]
self.intercept_ = -w[0]/w[x.shape[1]-1]
return w[0],w[1:]
def step(self,v):
return 1 if v>0 else 0
def predict(self, X_test):
import numpy as np
y_pred = np.dot(X_test,self.coef_) + self.intercept_
return y_pred
Hi!
Welcome to Google Cloud Community!
To properly replicate your use case, can you show any error message you are having? And what is your expected output/behavior?
Look at this r2_score is coming worst negetive.