Hi guys,
I'm working with ARIMA Model and I found a strange behaviour.
I have two dataset called
Then I create two model in this way
sample_10_arima
CREATE OR REPLACE MODEL
`anomaly_detection_poc.sample_10_arima`
OPTIONS(MODEL_TYPE = 'ARIMA_PLUS'
, TIME_SERIES_TIMESTAMP_COL = 'ts'
, TIME_SERIES_DATA_COL = 'value'
, HORIZON = 30
, AUTO_ARIMA = TRUE
, AUTO_ARIMA_MAX_ORDER = 5
, DATA_FREQUENCY = 'PER_MINUTE'
, CLEAN_SPIKES_AND_DIPS = FALSE
, MAX_TIME_SERIES_LENGTH = 10080
)
AS
SELECT *
FROM `anomaly_detection_poc.sample10`
WHERE ts <= '2022-07-03 02:00:00'
ORDER BY ts DESC
LIMIT 500;
sample_11_arima
CREATE OR REPLACE MODEL
`anomaly_detection_poc.sample_11_arima`
OPTIONS(MODEL_TYPE = 'ARIMA_PLUS'
, TIME_SERIES_TIMESTAMP_COL = 'ts'
, TIME_SERIES_DATA_COL = 'value'
, HORIZON = 30
, AUTO_ARIMA = TRUE
, AUTO_ARIMA_MAX_ORDER = 5
, DATA_FREQUENCY = 'PER_MINUTE'
, CLEAN_SPIKES_AND_DIPS = FALSE
, MAX_TIME_SERIES_LENGTH = 10080
)
AS
SELECT *
FROM `anomaly_detection_poc.sample11`
WHERE ts <= '2022-07-03 02:00:00'
ORDER BY ts DESC
LIMIT 500;
Then I call the ML.FORECAST function for both in that way
SELECT
f.forecast_timestamp,
f.forecast_value,
s10.value,
f.standard_error
FROM
ML.FORECAST(MODEL `anomaly_detection_poc.sample_10_arima`,
STRUCT(30 AS horizon, 0.95 AS confidence_level)) f
INNER JOIN `anomaly_detection_poc.sample10` s10 on s10.ts = f.forecast_timestamp;
Result for sample_10:
[{
"forecast_timestamp": "2022-07-03T02:01:00Z",
"forecast_value": "306.41173285451686",
"value": "304.609972052415",
"standard_error": "2.8199310058400839"
}, {
"forecast_timestamp": "2022-07-03T02:02:00Z",
"forecast_value": "305.37788426343457",
"value": "303.95136089787633",
"standard_error": "2.8211256733849956"
}, {
"forecast_timestamp": "2022-07-03T02:03:00Z",
"forecast_value": "306.739091217752",
"value": "303.6495107813119",
"standard_error": "2.8223198352358345"
}, {
"forecast_timestamp": "2022-07-03T02:04:00Z",
"forecast_value": "300.3377701753941",
"value": "298.6072872324707",
"standard_error": "2.8235134920342255"
}, {
"forecast_timestamp": "2022-07-03T02:05:00Z",
"forecast_value": "300.10617792916611",
"value": "294.65681486796137",
"standard_error": "2.8247066444204409"
}, {
"forecast_timestamp": "2022-07-03T02:06:00Z",
"forecast_value": "298.31753620063341",
"value": "299.76196578250261",
"standard_error": "2.8258992930334"
}, {
"forecast_timestamp": "2022-07-03T02:07:00Z",
"forecast_value": "30.122356218709314",
"value": "29.451189674897449",
"standard_error": "2.8270914385106733"
}, {
"forecast_timestamp": "2022-07-03T02:08:00Z",
"forecast_value": "40.60273774219533",
"value": "41.3004774222539",
"standard_error": "2.82828308148849"
}, {
"forecast_timestamp": "2022-07-03T02:09:00Z",
"forecast_value": "165.86050548201936",
"value": "162.47927425294355",
"standard_error": "2.8294742226017382"
}, {
"forecast_timestamp": "2022-07-03T02:10:00Z",
"forecast_value": "307.674541548093",
"value": "314.076719817158",
"standard_error": "2.8306648624839696"
}, {
"forecast_timestamp": "2022-07-03T02:11:00Z",
"forecast_value": "311.2102908255867",
"value": "305.12615161719276",
"standard_error": "2.8318550017674053"
}, {
"forecast_timestamp": "2022-07-03T02:12:00Z",
"forecast_value": "306.226013674404",
"value": "313.07125067705323",
"standard_error": "2.833044641082938"
}, {
"forecast_timestamp": "2022-07-03T02:13:00Z",
"forecast_value": "300.75685873687024",
"value": "304.717664646629",
"standard_error": "2.8342337810601355"
}, {
"forecast_timestamp": "2022-07-03T02:14:00Z",
"forecast_value": "305.61417943694067",
"value": "310.23180786201976",
"standard_error": "2.8354224223272473"
}, {
"forecast_timestamp": "2022-07-03T02:15:00Z",
"forecast_value": "303.68840718603383",
"value": "303.64800323499333",
"standard_error": "2.8366105655112044"
}, {
"forecast_timestamp": "2022-07-03T02:16:00Z",
"forecast_value": "301.47419763922971",
"value": "296.79744824800957",
"standard_error": "2.8377982112376268"
}, {
"forecast_timestamp": "2022-07-03T02:17:00Z",
"forecast_value": "29.893389212037278",
"value": "29.610424285628419",
"standard_error": "2.8389853601308261"
}, {
"forecast_timestamp": "2022-07-03T02:18:00Z",
"forecast_value": "41.396011596661424",
"value": "41.5123352698129",
"standard_error": "2.8401720128138077"
}, {
"forecast_timestamp": "2022-07-03T02:19:00Z",
"forecast_value": "163.35720284915556",
"value": "168.06883872246493",
"standard_error": "2.8413581699082777"
}, {
"forecast_timestamp": "2022-07-03T02:20:00Z",
"forecast_value": "308.69299234826951",
"value": "302.82608922667845",
"standard_error": "2.8425438320346439"
}, {
"forecast_timestamp": "2022-07-03T02:21:00Z",
"forecast_value": "304.99294433140392",
"value": "305.39582570271523",
"standard_error": "2.8437289998120212"
}, {
"forecast_timestamp": "2022-07-03T02:22:00Z",
"forecast_value": "310.90293309247426",
"value": "302.20232853605353",
"standard_error": "2.8449136738582346"
}, {
"forecast_timestamp": "2022-07-03T02:23:00Z",
"forecast_value": "304.67148335427134",
"value": "302.14484060782462",
"standard_error": "2.8460978547898241"
}, {
"forecast_timestamp": "2022-07-03T02:24:00Z",
"forecast_value": "304.85940187532356",
"value": "308.93581009174005",
"standard_error": "2.8472815432220462"
}, {
"forecast_timestamp": "2022-07-03T02:25:00Z",
"forecast_value": "301.24253166854521",
"value": "295.05089549592532",
"standard_error": "2.8484647397688811"
}, {
"forecast_timestamp": "2022-07-03T02:26:00Z",
"forecast_value": "298.28522662702073",
"value": "293.5837686256578",
"standard_error": "2.8496474450430318"
}, {
"forecast_timestamp": "2022-07-03T02:27:00Z",
"forecast_value": "30.56919200039917",
"value": "29.483629896147075",
"standard_error": "2.8508296596559326"
}, {
"forecast_timestamp": "2022-07-03T02:28:00Z",
"forecast_value": "40.988491674274059",
"value": "40.678949191269574",
"standard_error": "2.8520113842177488"
}, {
"forecast_timestamp": "2022-07-03T02:29:00Z",
"forecast_value": "163.75582623522916",
"value": "163.35355503598811",
"standard_error": "2.853192619337384"
}, {
"forecast_timestamp": "2022-07-03T02:30:00Z",
"forecast_value": "313.92758659728719",
"value": "305.91143123619014",
"standard_error": "2.8543733656224797"
}]
Result for sample_11:
[{
"forecast_timestamp": "2022-07-03T02:01:00Z",
"forecast_value": "100.53693546817703",
"value": "41.135001562854711",
"standard_error": "60.184482472084568"
}, {
"forecast_timestamp": "2022-07-03T02:02:00Z",
"forecast_value": "198.78980079180036",
"value": "161.18096707015462",
"standard_error": "73.23520166522043"
}, {
"forecast_timestamp": "2022-07-03T02:03:00Z",
"forecast_value": "274.06282751495371",
"value": "309.11862890065476",
"standard_error": "73.965335710915454"
}, {
"forecast_timestamp": "2022-07-03T02:04:00Z",
"forecast_value": "314.73754129211278",
"value": "317.59056591831012",
"standard_error": "89.992938647114883"
}, {
"forecast_timestamp": "2022-07-03T02:05:00Z",
"forecast_value": "231.57017561331438",
"value": "302.83582623865914",
"standard_error": "101.16968833227945"
}, {
"forecast_timestamp": "2022-07-03T02:06:00Z",
"forecast_value": "245.46052654438029",
"value": "309.55330946160922",
"standard_error": "101.46381053942768"
}, {
"forecast_timestamp": "2022-07-03T02:07:00Z",
"forecast_value": "243.14060397122429",
"value": "310.52346182933485",
"standard_error": "101.47200274626169"
}, {
"forecast_timestamp": "2022-07-03T02:08:00Z",
"forecast_value": "243.52807011748283",
"value": "308.20566493507033",
"standard_error": "101.47223125532678"
}, {
"forecast_timestamp": "2022-07-03T02:09:00Z",
"forecast_value": "243.46335674461702",
"value": "306.47721383658927",
"standard_error": "101.47223762949433"
}, {
"forecast_timestamp": "2022-07-03T02:10:00Z",
"forecast_value": "243.47416496791112",
"value": "304.5239238135868",
"standard_error": "101.47223780729935"
}, {
"forecast_timestamp": "2022-07-03T02:11:00Z",
"forecast_value": "243.47235981256838",
"value": "29.60521677814036",
"standard_error": "101.47223781225917"
}, {
"forecast_timestamp": "2022-07-03T02:12:00Z",
"forecast_value": "243.47266130391648",
"value": "41.807929278280589",
"standard_error": "101.47223781239751"
}, {
"forecast_timestamp": "2022-07-03T02:13:00Z",
"forecast_value": "243.47261094978307",
"value": "166.22813087686413",
"standard_error": "101.47223781240136"
}, {
"forecast_timestamp": "2022-07-03T02:14:00Z",
"forecast_value": "243.4726193597715",
"value": "311.120674277285",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:15:00Z",
"forecast_value": "243.47261795516178",
"value": "314.0272359705304",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:16:00Z",
"forecast_value": "243.47261818975525",
"value": "305.7107591848029",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:17:00Z",
"forecast_value": "243.47261815057419",
"value": "310.24411130736274",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:18:00Z",
"forecast_value": "243.47261815711809",
"value": "310.7495483682959",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:19:00Z",
"forecast_value": "243.47261815602516",
"value": "309.75593252507184",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:20:00Z",
"forecast_value": "243.47261815620769",
"value": "307.30120520293525",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:21:00Z",
"forecast_value": "243.47261815617719",
"value": "305.22389101135269",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:22:00Z",
"forecast_value": "243.47261815618231",
"value": "30.201925796580159",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:23:00Z",
"forecast_value": "243.47261815618145",
"value": "41.982169328730954",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:24:00Z",
"forecast_value": "243.4726181561816",
"value": "166.40265635454585",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:25:00Z",
"forecast_value": "243.47261815618157",
"value": "313.89491002223463",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:26:00Z",
"forecast_value": "243.47261815618157",
"value": "304.88350360153481",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:27:00Z",
"forecast_value": "243.47261815618157",
"value": "312.68737586889137",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:28:00Z",
"forecast_value": "243.47261815618157",
"value": "306.59293265266768",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:29:00Z",
"forecast_value": "243.47261815618157",
"value": "302.44991069056488",
"standard_error": "101.47223781240149"
}, {
"forecast_timestamp": "2022-07-03T02:30:00Z",
"forecast_value": "243.47261815618157",
"value": "306.66045835707689",
"standard_error": "101.47223781240149"
}]
In the first case sample_10_arima the standard_error is low (around 2.8) but in the sample_11_arima the standard_error is high (between 60 and 101). Why this difference occour? The time series are very similar
Thanks,
Marcello
Can you please file an issue at issue tracker according to this behavior shown?