
1

SRE Fundamentals
TAM Webinar

SEP 2022

Proprietary + Confidential

1

3

4

Let’s go

Purpose & Target

Learning & Certification

Q&A

2 Agenda

Purpose
& Target

SRE Fundamentals
The objective of this TAM Webinar is to share Site Reliability Engineering (SRE) knowledge
with Google Cloud Community.

In this webinar you will learn the principles and practices that allow your systems to be
more scalable, reliable and efficient - these lessons can be directly applied to you
company.

Agenda

SRE Fundamentals Agenda
14:00 ~ 14:05 { Opening }

14:05 ~ 14:50 { SRE introduction }

14:50 ~ 15:00 { Q&A}

XX
Sep

14:00 (BRT)

Pamella
Canova
Technical Account Manager

Introduction to SRE

Pamella Canova
Technical Account Manager

What is SRE? Key principles
of SRE

Topics

How to get
started

Practices of
SRE

Ways to get
help

1What is SRE?

"SRE is what happens when you ask a software engineer to design an operations
team" Benjamin Treynor, SRE VP.

Definition & History

Site reliability engineering (SRE) is a set of principles and practices that incorporates
aspects of software engineering and applies them to infrastructure and operations
problems. The main goals are to create scalable and highly reliable software systems.

Site reliability engineering (SRE) was born at Google in 2003, prior to the DevOps
movement, when the first team of software engineers led by Ben Treynor Sloss, was
tasked to make Google’s already large-scale sites more reliable, efficient, and scalable.
The practices they developed responded so well to Google’s needs that other big tech
companies, also adopted them and brought new practices to the table.

Software engineering as a
discipline focuses on designing
and building rather than operating
and maintaining, despite estimates
that 40%1 to 90%2 of the total
costs are incurred after launch.
1 Glass, R. (2002). Facts and Fallacies of Software
Engineering, Addison-Wesley Professional; p. 115.
2 Dehaghani, S. M. H., & Hajrahimi, N. (2013). Which Factors
Affect Software Projects Maintenance Cost More? Acta
Informatica Medica, 21(1), 63–66.
http://doi.org/10.5455/AIM.2012.21.63-66

Software's
long-term
cost

Image:Pixabay License. No attribution required.

Incentives aren't aligned.

Developers
Agility

Operators
Stability

Reducing product lifecycle friction

Concept Business Development Operations Market

Agile
solves this

DevOps
solves this

5 key areas
1. Reduce organizational silos

2. Accept failure as normal

3. Implement gradual changes

4. Leverage tooling and automation

5. Measure everything

DevOps

is a set of practices, guidelines
and culture designed to break
down silos in IT development,
operations, architecture,
networking and security.

interface DevOps

The SRE approach
to operations
Use data to guide decision-making.

Treat operations like a software
engineering problem:

● Hire people motivated and capable
to write automation.

● Use software to accomplish tasks
normally done by sysadmins.

● Design more reliable and operable
service architectures from the start.

 SRE is a job function, a mindset, and
a set of engineering approaches to
running better production systems.

 Site Reliability Engineers develop
solutions to design, build, and run
large-scale systems scalably,
reliably, and efficiently.

What do SRE teams do?

 We approach our work with a spirit of
constructive pessimism: we hope for
the best, but plan for the worst.

 We guide system architecture
by operating at the intersection
of software development and
systems engineering.

5 key areas
1. Reduce organizational silos

2. Accept failure as normal

3. Implement gradual changes

4. Leverage tooling and automation

5. Measure everything

DevOps

is a set of practices, guidelines and
culture designed to break down silos in
IT development, operations, architecture,
networking and security.

Site Reliability Engineering
is a set of practices we've found to work,
some beliefs that animate those
practices, and a job role.

class SRE implements DevOps

2Error Budgets
The key principle of SRE

= which fraction of time
the service is available and working

Availability =
good time

total time

 Relatively easy to measure for a continuous
binary metric e.g. machine uptime

Naive approach:

How to measure reliability

 Much harder for distributed request/response services

 – Is a server that currently does not get requests up or down?
– If 1 of 3 servers are down, is the service up or down?Intuitive for humans

= which fraction of real users for whom
the service is available and working

Availability =
good interactions

total interactions

 Handles distributed request/response services
well

More sophisticated approach:

How to measure reliability

 Enables these cases:

 – Is a server that currently does not get requests up or down?
– If 1 of 3 servers are down, is the service up or down?

Reliability
level

Allowed unreliability window

per year per quarter per 30 days

 90% 36.5 days 9 days 3 days

 95% 18.25 days 4.5 days 1.5 days

 99% 3.65 days 21.6 hours 7.2 hours

 99.5% 1.83 days 10.8 hours 3.6 hours

 99.9% 8.76 hours 2.16 hours 43.2 minutes

 99.95% 4.38 hours 1.08 hours 21.6 minutes

 99.99% 52.6 minutes 12.96 minutes 4.32 minutes

 99.999% 5.26 minutes 1.30 minutes 25.9 seconds

Source: https://landing.google.com/sre/sre-book/chapters/availability-table/

Reliability
level

Allowed unreliability window

per year per quarter per 30 days

 90% 36.5 days 9 days 3 days

 95% 18.25 days 4.5 days 1.5 days

 99% 3.65 days 21.6 hours 7.2 hours

 99.5% 1.83 days 10.8 hours 3.6 hours

 99.9% 8.76 hours 2.16 hours 43.2 minutes

 99.95% 4.38 hours 1.08 hours 21.6 minutes

 99.99% 52.6 minutes 12.96 minutes 4.32 minutes

 99.999% 5.26 minutes 1.30 minutes 25.9 seconds

Error Rate Allowed
duration

 100% 21.6 minutes

 10% 3.6 hours

 1% 36 hours

 0.1% 15 days

<0.05% all month

Source: https://landing.google.com/sre/sre-book/chapters/availability-table/

100% is the wrong reliability
target for basically everything.”
Benjamin Treynor Sloss, Vice President of 24x7 Engineering, Google

“

Error budgets
● Product management & SRE define an

availability target.

● 100% minus availability target
is a “budget of unreliability”
(or the error budget).

● Monitoring measures actual uptime.

● Control loop for utilizing budget!

Public Domain Image

 Dev team becomes self-policing
The error budget is a valuable resource for them

 Common incentive for devs and SREs
Find the right balance between innovation and reliability

Benefits of error budgets

 Shared responsibility for system uptime
Infrastructure failures eat into the devs’ error budget

 Dev team can manage the risk themselves
They decide how to spend their error budget

 Unrealistic reliability goals become unattractive
Such goals dampen the velocity of innovation

Glossary
of terms

SLI
service level
indicator: a
well-defined
measure of
'successful enough'

• used to specify
SLO/SLA

• Func(metric) <
threshold

SLO
service level
objective: a top-line
target for fraction
of successful
interactions

• specifies goals
(SLI + goal)

SLA
service level
agreement:
consequences

• SLA = (SLO + margin)
+ consequences = SLI
+ goal + consequences

 Try to exceed SLO target, but not by much

Service-level objective (SLO): a target for SLIs
aggregated over time

● Measured using an SLI (service-level indicator)
● Typically, sum(SLI met) / window >= target

percentage

SLO definition and measurement
Choosing an appropriate SLO is complex.
Try to keep it simple, avoid absolutes,
perfection can wait.

Why?

● Sets priorities and constraints
for SRE and dev work

● Sets user expectations about
level of service

Product lifecycle

Concept Business Development Operations Market

SLO & SRE
solve this problem

Business Process

5 key areas
1. Reduce organizational silos: Share ownership
2. Accept failure as normal: Error budgets
3. Implement gradual changes
4. Leverage tooling and automation
5. Measure everything: Measure reliability

class SRE implements DevOps

DevOps

is a set of practices, guidelines and
culture designed to break down silos in
IT development, operations, architecture,
networking and security.

Site Reliability Engineering
is a set of practices we've found to work,
some beliefs that animate those
practices, and a job role.

3The practices of
SRE

Metrics &
Monitoring

Capacity
Planning

Areas of practice

Emergency
Response

Change
Management Culture

 Alerting: triggers notification
when conditions are detected

• Page: Immediate human
response is required

• Ticket: A human needs to take
action, but not immediately

 Monitoring: automate
recording system metrics

• Primary means of
determining and
maintaining reliability

Monitoring & Alerting

 Only involve humans
when SLO is threatened

• Humans should never
watch dashboards, read
log files, and so on just
to determine whether
the system is okay

Demand
forecasting and
capacity planning
Plan for organic growth
Increased product adoption and usage by
customers.

Determine inorganic growth
Sudden jumps in demand due to feature
launches, marketing campaigns, etc.

Correlate raw resources to service capacity
Make sure that you have enough spare capacity
to meet your reliability goals.

Efficiency and
performance
Capacity can be expensive —> optimize utilization

● Resource use is a function of demand (load),
capacity, and software efficiency

● SRE demands prediction and provisioning,
and can modify the software

SRE monitors utilization and performance

● Regressions can be detected and acted upon
● Immature team: by adjusting the resources

or by improving the software efficiency
● Mature team: rollback

Source: Pixabay (no attribution required)

Quickly and accurately
detect problems

Roughly 70%1 of outages
are due to changes in a
live system

1 Analysis of Google internal data, 2011-2018

Change management

 Remove humans from the loop
with automation to:

• Reduce errors
• Reduce fatigue
• Improve velocity

Implement progressive
rollouts

Roll back changes safely
when problems arise

Mitigations:

Pursuing maximum
change velocity
100% is the wrong reliability target for basically
everything

● Determine the desired reliability for your product
● Don't try to provide better quality than desired

Spend error budget to increase development velocity

● The goal is not zero outages, but maximum
velocity within the error budget

● Use error budget for releases, experiments etc.

Provisioning
 A combination of change management
and capacity planning

● Increase the size of an existing
service instance/location

● Spin up additional instances/locations

 Needs to be done quickly

● Unused capacity can be expensive

 Needs to be done correctly

● Added capacity needs to be tested
● Often a significant configuration change —>

risky

“Things break, that’s life”

Emergency
response

Few people naturally react well to emergencies,
so you need a process:

● First of all, don’t panic!
You aren’t alone and the sky isn’t falling.

● Mitigate, troubleshoot, and fix.

● If you feel overwhelmed, pull in more
people.

Incident &
postmortem
thresholds

● User-visible downtime or degradation
beyond a certain threshold

● Data loss of any kind

● On-call engineer significant intervention
(release rollback, rerouting of traffic, etc.)

● A resolution time above some threshold

It is important to define incident &
postmortem criteria before an incident occurs.

Used with permission of the image owner Jennifer Petoff, Sidewalk Safari Blog

 Postmortems are expected after
any significant undesirable event

• Writing a postmortem is not a punishment

 The primary goals of writing a postmortem
are to ensure that:

• The incident is documented

• All contributing root causes are well understood

• Effective preventive actions are put in place
to reduce the likelihood and/or impact of recurrence

Postmortem philosophy

Blamelessness
● Postmortems must focus on identifying the

contributing causes without indicating any
individual or team

● A blamelessly written postmortem assumes that
everyone involved in an incident had good
intentions

● "Human" errors are systems problems. You can’t
“fix” people, but you can fix systems and
processes to better support people in making the
right choices.

● If a culture of finger pointing prevails, people will
not bring issues to light for fear of punishment

Toil management/operational work

 What?

 Work directly tied to running a service that is:

• Manual (manually running a script)

• Repetitive (done every day or for every new customer)

• Automatable (no human judgement is needed)

• Tactical (interrupt-driven and reactive)

• Without enduring value (no long-term system improvements)

• O(n) with service growth (grows with user count or service size)

 Why?

 Because:

• Exposure to real failures guides
how you design systems

• You can’t automate everything

• If you do enough Ops work,
you know what to automate

 For more detail, see “Hiring Site Reliability Engineers,” by Chris Jones,
Todd Underwood, and Shylaja Nukala, ;login:, June 2015

Hire good software engineers (SWE)
and good systems engineers (SE).

Not necessarily all in one person.

Try to get a 50:50 mix of SWE
and SE skillsets on team

Everyone should be able to code.

SE != "ops work"

Team skills

Empowering SREs
● SREs must be empowered to enforce the

error budget and toil budget.

● SREs are valuable and scarce. Use their
time wisely.

● Avoid forcing SREs to take on too much
operational burden; load-shed to keep the
team healthy.

Source: Pixabay (no attribution required)

● Toil management
● Engineering alignment
● Blamelessness

● SLOs
● Dashboards
● Analytics

● Forecasting
● Demand-driven
● Performance

● Release process
● Consulting design
● Automation

● Oncall
● Analysis
● Postmortems

Metrics &
Monitoring

Capacity
Planning

Recap of SRE practices

Emergency
Response

Change
Management

Culture

5 key areas
1. Reduce organizational silos: Share ownership
2. Accept failure as normal: Error budgets & blameless

postmortems
3. Implement gradual changes: Reduce cost of failure
4. Leverage tooling and automation: Automate common

cases
5. Measure everything: Measure toil and reliability

DevOps

is a set of practices, guidelines and
culture designed to break down silos in
IT development, operations, architecture,
networking and security.

Site Reliability Engineering
is a set of practices we've found to work,
some beliefs that animate those
practices, and a job role.

class SRE implements DevOps

4How to get
started

1. Start with Service Level Objectives.
SRE teams work to a SLO and/or error
budget. They defend the SLO.

2. Hire people who write software.
They'll quickly become bored by performing
tasks by hand and replace manual work.

3. Ensure parity of respect with rest of the
development/engineering organization.

4. Provide a feedback loop for self-regulation.
SRE teams choose their work.
SREs must be able to shed work or reduce
SLOs when overloaded.

Do these
four things.

● Pick one service to run according to SRE model

● Empower the team with strong executive
sponsorship and support

● Culture and psychological safety is critical.

● Measure Service Level Objectives & team health.

● Incremental progress frees time for more
progress.

You can do
this.

● Spread the techniques and knowledge once you
have a solid case study within your company

● If you have well-defined SLOs, Google can work
with you to reduce friction via shared monitoring
and other collaboration.

Spread the
love.

● Effortless scale shouldn't meet escalating
operational demands.

● Automation and engineering for operability enable
scaling systems without scaling organizations.

● Tension between product development and
operations doesn't need to exist.

● Error budgets provide measurement and flexibility
to deliver both reliability and product velocity.

SRE solves
cloud
reliability.

Learning & Certification

Book covers copyright O’Reilly Media. Used with permission.

Find Google SRE publications—including the SRE Books, articles, trainings,
and more—for free at sre.google/resources.

Site Reliability Engineering: Measuring and Managing Reliability
https://www.coursera.org/learn/site-reliabilityhttps-engineering-slos

Google cloud Certifications

Professional
Cloud DevOps
Engineer

Professional
Collaboration
Engineer

Professional
Cloud Architect

Professional
Data Engineer

Foundational
Cloud knowledge and working
in the cloud

Associate
Recommended 6+ months
hands-on experience
with GCP

Associate
Cloud
Engineer

Professional
Cloud
Developer

Professional
Cloud Network
Engineer

Professional
Cloud Security
Engineer

Professional
Recommended 3+ years
industry experience & 1 year
hands-on experience
with GCP

Professional
Machine Learning
Engineer

Cloud
Digital
Leader

Questions?

Thank you

