from google.cloud.aiplatform import hyperparameter_tuning as hpt worker_pool_specs = [ { "machine_spec": { "machine_type": "n1-standard-4", "accelerator_type": "NVIDIA_TESLA_K80", "accelerator_count": 1, }, "replica_count": 1, "container_spec": { "image_uri": container_image_uri, "command": [], "args": [], }, } ] custom_job = aiplatform.CustomJob( display_name='my_job', worker_pool_specs=worker_pool_specs, labels={'my_key': 'my_value'}, ) hp_job = aiplatform.HyperparameterTuningJob( display_name='hp-test', custom_job=job, metric_spec={ 'loss': 'minimize', }, parameter_spec={ 'C': hpt.DoubleParameterSpec(min=0.001, max=0.1, scale='log'), 'max_iter': hpt.IntegerParameterSpec(min=4, max=128, scale='linear'), 'penalty': hpt.CategoricalParameterSpec(values=['l1', 'l2']), 'solver': hpt.CategoricalParameterSpec(values=['sag', 'saga']) }, max_trial_count=128, parallel_trial_count=8, labels={'my_key': 'my_value'}, ) hp_job.run() print(hp_job.trials)
I have looked into documentations and have tried asking help from GPTs but am not able to figure it out. Could you guys help?
User | Count |
---|---|
2 | |
1 | |
1 | |
1 | |
1 |