I'm using Terraform to create a DataStream that connects to a private MySQL instance in Cloud SQL. However, I'm encountering connection errors despite seemingly correct configurations.
My Terraform provisions the following resources:
I don't understand why it is not able connect MySQL server:
Solved! Go to Solution.
Here are some steps to troubleshoot the connection issues between Datastream and your private Cloud SQL MySQL instance:
1. Fundamentals: Network and Cloud SQL Setup
2. DataStream Configuration
3. Hands-on Testing
mysql-client
on the VM and try connecting: mysql -u your_username -p -h [Cloud SQL private IP]
telnet [Cloud SQL private IP] 3306
4. Deeper Checks
roles/cloudsql.client
).Additional Tips
terraform plan
to get a preview of your infrastructure changes before applying them.
The "connection refused" error from Google Cloud Datastream to your MySQL server (192.168.59.52) likely stems from one of these:
Troubleshooting Steps:
Verify Hostname Resolution:
nslookup xxxxxx.com
. The output should match your MySQL server's private IP (192.168.59.52).Check MySQL Server Accessibility:
bind-address
in your MySQL config file (my.cnf
or my.ini
).Test Direct Connectivity:
mysql -h xxxxxx.com -u your_username -p
to connect directly to the MySQL server using the hostname.Review Terraform Configuration:
google_datastream_connection_profile
resource, ensure the hostname
under mysql_profile
directly points to your MySQL server's hostname (not a Compute Engine instance unless it's specifically forwarding MySQL traffic).Example:
resource "google_datastream_connection_profile" "source_connection_profile" {
# ... other attributes ...
mysql_profile {
hostname = "your_mysql_server_hostname" # Use the actual MySQL hostname
# ... other attributes ...
}
}
Further Debugging:
If the issue persists:
Yes, you can use the same Cloud SQL Auth Proxy, for multiple Google Cloud Datastream instances.
The error "BIGQUERY_DYNAMIC_DATASET_LOCATION_CONFLICT", "level": "ERROR", "message": "Datastream can't create one or more BigQuery datasets in the specified location, because datasets with the same name already exist in a different location.", "metadata": {"dataset_conflicts":"ss_v2_db (US) "}}],"state": "FAILED" }" is related to a location conflict for BigQuery datasets. According to the error message, it appears that Datastream is attempting to create or write to a dataset in a location that conflicts with existing datasets.
Here’s how to troubleshoot and potentially resolve this issue:
Check Dataset Location:
bq
command-line tool:
bq show --format=prettyjson your-dataset
Update Datastream Configuration:
location
in your dataset_template
to match the existing BigQuery dataset's location. Here is the modified section of your Terraform script:
bigquery_destination_config {
source_hierarchy_datasets {
dataset_template {
location = "YOUR_DATASET_LOCATION" # Match this with your BigQuery dataset location
}
}
}
Reapply Terraform Configuration:
terraform apply
Validate and Monitor:
Logging and Debugging:
If you continue to encounter difficulties, review the Google Cloud Datastream documentation for any updates or notices regarding limitations or configuration specifics.
Here are some steps to troubleshoot the connection issues between Datastream and your private Cloud SQL MySQL instance:
1. Fundamentals: Network and Cloud SQL Setup
2. DataStream Configuration
3. Hands-on Testing
mysql-client
on the VM and try connecting: mysql -u your_username -p -h [Cloud SQL private IP]
telnet [Cloud SQL private IP] 3306
4. Deeper Checks
roles/cloudsql.client
).Additional Tips
terraform plan
to get a preview of your infrastructure changes before applying them.
Got it! Thank you.
I have created resources using Terraform for DataStream to MySQL private connectivity. Previously, I created a source connection profile and used an IP address instead of a hostname with same configuration. Here is an example:
But now I want to create it using a hostname instead of an IP address. I have written Terraform code for that; however, I'm facing issues while creating it using a hostname.
Could you please help me with this issue?
Error:
Error: Error waiting for Updating ConnectionProfile: {"@type":"type.googleapis.com/google.rpc.ErrorInfo","domain":"datastream.googleapis.com","metadata":{"message":"We can't connect to the data source using the hostname that you provided. Make sure that the hostname is correct.","originalMessage":"(2003, \"Can't connect to MySQL server on '192.168.59.52' ([Errno 111] Connection refused)\")","time":"2024-04-11T12:42:25.686357Z","uuid":"0ff7fc6f-cd38-42f0-b76f-498e0e3bbfa1"},"reason":"WRONG_HOSTNAME"}
│ {"code":"VALIDATE_CONNECTIVITY","description":"Validates that Datastream can connect to the source database.","message":[{"code":"WRONG_HOSTNAME","level":"ERROR","message":"We can't connect to the data source using the hostname that you provided. Make sure that the hostname is correct.","metadata":{"original_error":"(2003, \"Can't connect to MySQL server on '192.168.59.52' ([Errno 111] Connection refused)\")"}}],"state":"FAILED"}
│ with google_datastream_connection_profile.source_connection_profile,
│ on main.tf line 143, in resource "google_datastream_connection_profile" "source_connection_profile":
│ 143: resource "google_datastream_connection_profile" "source_connection_profile" {
Terraform :
resource "google_compute_instance" "custom_hostname_instance" {
name = "custom-hostname-instance-name"
project = var.project
machine_type = var.proxy_machine_type
zone = var.zone
# Set a custom hostname below
hostname = "xxxxxx.com"
boot_disk {
initialize_params {
image = "debian-cloud/debian-11"
}
}
network_interface {
network = google_compute_network.network.name
subnetwork = google_compute_subnetwork.private-1.self_link
access_config {
// Ephemeral public IP
}
}
resource "google_datastream_connection_profile" "source_connection_profile" {
display_name = "Source connection profile"
location = var.region
connection_profile_id = "source-profile"
project = var.project
mysql_profile {
hostname = google_compute_instance.custom_hostname_instance.hostname
username = var.user_name
password = var.user_password
}
private_connectivity {
private_connection = google_datastream_private_connection.private.id
}
# depends_on = [google_datastream_private_connection.private]
}
The "connection refused" error from Google Cloud Datastream to your MySQL server (192.168.59.52) likely stems from one of these:
Troubleshooting Steps:
Verify Hostname Resolution:
nslookup xxxxxx.com
. The output should match your MySQL server's private IP (192.168.59.52).Check MySQL Server Accessibility:
bind-address
in your MySQL config file (my.cnf
or my.ini
).Test Direct Connectivity:
mysql -h xxxxxx.com -u your_username -p
to connect directly to the MySQL server using the hostname.Review Terraform Configuration:
google_datastream_connection_profile
resource, ensure the hostname
under mysql_profile
directly points to your MySQL server's hostname (not a Compute Engine instance unless it's specifically forwarding MySQL traffic).Example:
resource "google_datastream_connection_profile" "source_connection_profile" {
# ... other attributes ...
mysql_profile {
hostname = "your_mysql_server_hostname" # Use the actual MySQL hostname
# ... other attributes ...
}
}
Further Debugging:
If the issue persists:
Thank you for the guidance! I have another question: Can we use the same proxy for multiple DataStream's?
Yes, you can use the same Cloud SQL Auth Proxy, for multiple Google Cloud Datastream instances.
That's Great! Thank you.
I have multiple instances can i use same Cloud SQL Auth Proxy for that multiple Google Cloud Datastream instances.
eg: I have 3 MySQL instances and i want to create multiple datastream for each instances for that also can use the same Cloud SQL Auth Proxy?
resource "google_compute_instance" "private" {
project = var.gcp_project_id
name = "datastream-proxy"
machine_type = var.proxy_machine_type
zone = var.gcp_zone_c
boot_disk {
initialize_params {
image = "debian-cloud/debian-11"
}
}
network_interface {
# network = data.google_compute_network.network.name
# subnetwork = data.google_compute_subnetwork.private-1.self_link
network = var.vpc_name
subnetwork = var.subnet_name
network_ip = google_compute_address.static.address
access_config {
// Ephemeral public IP
}
}
metadata_startup_script = <<EOT
#!/bin/sh
apt-get update
sudo apt-get install wget -y
wget https://dl.google.com/cloudsql/cloud_sql_proxy.linux.amd64 -O cloud_sql_proxy
chmod +x cloud_sql_proxy
./cloud_sql_proxy -instances=${data.google_sql_database_instance.main_primary.connection_name}=tcp:0.0.0.0:3306
EOT
service_account {
scopes = ["cloud-platform"]
}
}
Yes, you can indeed use a single Cloud SQL Auth Proxy to handle connections for multiple Google Cloud Datastream instances, even if these Datastream instances are intended to connect to different MySQL instances hosted on Google Cloud SQL. The Cloud SQL Auth Proxy is designed to manage connections to multiple Cloud SQL instances, making it an efficient solution for scenarios where multiple databases need to be accessible through a centralized, secure channel.
In your Terraform configuration, you can adapt the Cloud SQL Auth Proxy setup to handle connections to multiple Cloud SQL instances by specifying each instance in the startup script of the proxy server. Here’s how you can modify your Terraform script to connect to multiple MySQL instances:
Modify the metadata_startup_script
to include multiple Cloud SQL instance connections. You can specify multiple instances in the Cloud SQL Auth Proxy command by separating them with commas. Here's an example of how to modify the script to handle three MySQL instances:
metadata_startup_script = <<EOT
#!/bin/sh
apt-get update
sudo apt-get install wget -y
wget https://dl.google.com/cloudsql/cloud_sql_proxy.linux.amd64 -O cloud_sql_proxy
chmod +x cloud_sql_proxy
# Assuming three Cloud SQL instances
./cloud_sql_proxy -instances=${data.google_sql_database_instance.instance1.connection_name}=tcp:3306,${data.google_sql_database_instance.instance2.connection_name}=tcp:3307,${data.google_sql_database_instance.instance3.connection_name}=tcp:3308
EOT
In this script:
instance1
, instance2
, instance3
) are defined correctly in your Terraform configurations to pull the connection names.Adjust Network Settings:
network_ip
should be set if you are assigning a static internal IP address, ensuring it is accessible from where the Datastream instances will be running.Service Account Permissions:
Security Considerations:
Testing and Validation:
I have configured multiple instances in Datastream and created multiple DataStream's for each one.
In my case, I already have multiple datasets and tables in BigQuery.
Now, I want to replicate newly added data into BigQuery in the same dataset, but I am not able to replicate it. I am facing the following issues:
Is datastream not able to replicate data in same dataset in same table or it is creating new dataset and table for each?
resource "google_datastream_connection_profile" "source_connection_profile1" {
display_name = "mysql-bq-source1"
project = var.gcp_project_id
location = var.gcp_region
connection_profile_id = "source-profile1"
mysql_profile {
hostname = google_compute_instance.private.network_interface.0.network_ip
username = data.google_secret_manager_secret_version.app_user_secret.secret_data
password = data.google_secret_manager_secret_version.app_pwd_secret.secret_data
}
private_connectivity {
private_connection = google_datastream_private_connection.private.id
}
depends_on = [
google_compute_address.static,
data.google_secret_manager_secret_version.app_pwd_secret,
data.google_secret_manager_secret_version.app_user_secret
]
}
resource "google_datastream_connection_profile" "destination_connection_profile1" {
display_name = "mysql-bq-destination1"
location = var.gcp_region
connection_profile_id = "destination-profile1"
project = var.gcp_project_id
bigquery_profile {}
}
# Create Datastream Stream
resource "google_datastream_stream" "mysql_to_bigquery1" {
display_name = "mysql_to_bigquery1"
location = var.gcp_region
project = var.gcp_project_id
stream_id = "mysql_to_bigquery1"
desired_state = "NOT_STARTED"
source_config {
source_connection_profile = google_datastream_connection_profile.source_connection_profile1.id
mysql_source_config {
include_objects {
mysql_databases {
database = "ss_v2_db"
mysql_tables {
table = "transaction_monitors"
}
}
}
}
}
destination_config {
destination_connection_profile = google_datastream_connection_profile.destination_connection_profile1.id
bigquery_destination_config {
source_hierarchy_datasets {
dataset_template {
location = var.gcp_region
# kms_key_name = "bigquery-kms-name"
}
}
}
}
backfill_none {
}
}
The error "BIGQUERY_DYNAMIC_DATASET_LOCATION_CONFLICT", "level": "ERROR", "message": "Datastream can't create one or more BigQuery datasets in the specified location, because datasets with the same name already exist in a different location.", "metadata": {"dataset_conflicts":"ss_v2_db (US) "}}],"state": "FAILED" }" is related to a location conflict for BigQuery datasets. According to the error message, it appears that Datastream is attempting to create or write to a dataset in a location that conflicts with existing datasets.
Here’s how to troubleshoot and potentially resolve this issue:
Check Dataset Location:
bq
command-line tool:
bq show --format=prettyjson your-dataset
Update Datastream Configuration:
location
in your dataset_template
to match the existing BigQuery dataset's location. Here is the modified section of your Terraform script:
bigquery_destination_config {
source_hierarchy_datasets {
dataset_template {
location = "YOUR_DATASET_LOCATION" # Match this with your BigQuery dataset location
}
}
}
Reapply Terraform Configuration:
terraform apply
Validate and Monitor:
Logging and Debugging:
If you continue to encounter difficulties, review the Google Cloud Datastream documentation for any updates or notices regarding limitations or configuration specifics.
@ms4446
In my implementation there are two cases:
1. I have existing datasets and tables i just want to migrate MySQL data into its respective dataset and table.
2. In second condition i don't have dataset and tables in BQ side for that i need to create that in BQ
my question ....is there any need in 2nd case to give dataset and table name in destination configuration ,because when i start stream my dataset and table both are not created and migrated, can you analyze both configuration and suggests ,what's wrong with my configuration.
is my both destination configuration are correct?
or need to give only us region for BQ ?
1 case terraform :
resource "google_datastream_connection_profile" "source_connection_profile6" {
display_name = "mysql-bq-source6"
project = var.gcp_project_id
location = var.gcp_region
connection_profile_id = "source-profile6"
mysql_profile {
hostname = google_compute_instance.private.network_interface.0.network_ip
username = data.google_secret_manager_secret_version.app_user_secret.secret_data
password = data.google_secret_manager_secret_version.app_pwd_secret.secret_data
port = 3306
}
private_connectivity {
private_connection = google_datastream_private_connection.private.id
}
depends_on = [
google_compute_address.static,
data.google_secret_manager_secret_version.app_pwd_secret,
data.google_secret_manager_secret_version.app_user_secret
]
}
resource "google_datastream_connection_profile" "destination_connection_profile6" {
display_name = "mysql-bq-destinatio6"
location = var.gcp_region
connection_profile_id = "destination-profile6"
project = var.gcp_project_id
bigquery_profile {}
}
resource "google_datastream_stream" "mysql_to_bigquery6" {
display_name = "ss-prd1-v2-rds-redshift"
location = var.gcp_region
project = var.gcp_project_id
stream_id = "mysql_to_bigquery6"
desired_state = "NOT_STARTED"
source_config {
source_connection_profile = google_datastream_connection_profile.source_connection_profile6.id
mysql_source_config {
include_objects {
mysql_databases {
database = "ss_v2_db"
dynamic "mysql_tables" {
for_each = var.ss-prd1-v2-rds-redshift-tables
content {
table = mysql_tables.value
}
}
}
}
}
}
destination_config {
destination_connection_profile = google_datastream_connection_profile.destination_connection_profile6.id
bigquery_destination_config {
data_freshness = "900s"
single_target_dataset {
dataset_id = "sample:ss_v2_db"
}
}
}
backfill_all {
}
}
2 case:
resource "google_datastream_connection_profile" "source_connection_profile7" {
display_name = "mysql-bq-source7"
project = var.gcp_project_id
location = var.gcp_region
connection_profile_id = "source-profile7"
mysql_profile {
hostname = google_compute_instance.private.network_interface.0.network_ip
username = data.google_secret_manager_secret_version.engagement_user_secret.secret_data
password = data.google_secret_manager_secret_version.engagement_pwd_secret.secret_data
port = 3308
}
private_connectivity {
private_connection = google_datastream_private_connection.private.id
}
depends_on = [
google_compute_address.static,
data.google_secret_manager_secret_version.engagement_pwd_secret,
data.google_secret_manager_secret_version.engagement_user_secret
]
}
resource "google_datastream_connection_profile" "destination_connection_profile7" {
display_name = "mysql-bq-destinatio7"
location = var.gcp_region
connection_profile_id = "destination-profile7"
project = var.gcp_project_id
bigquery_profile {}
}
resource "google_datastream_stream" "mysql_to_bigquery7" {
display_name = "exp-prod-engagement-rds-dms"
location = var.gcp_region
project = var.gcp_project_id
stream_id = "mysql_to_bigquery7"
desired_state = "NOT_STARTED"
source_config {
source_connection_profile = google_datastream_connection_profile.source_connection_profile7.id
mysql_source_config {
include_objects {
mysql_databases {
database = "ss_v2_engagement_db"
dynamic "mysql_tables" {
for_each = var.exp-prod-engagement-rds-dms-tables
content {
table = mysql_tables.value
}
}
}
}
}
}
destination_config {
destination_connection_profile = google_datastream_connection_profile.destination_connection_profile7.id
bigquery_destination_config {
source_hierarchy_datasets {
dataset_template {
location = var.gcp_region
}
}
}
}
backfill_none {
}
}
Hi @Nikita_G ,
To successfully replicate data from MySQL to BigQuery using Datastream in both scenarios (existing or new BigQuery datasets and tables), it's important to configure Datastream accurately. Here's some recommendations based on your Terraform configurations:
Case 1: Existing Datasets and Tables
When replicating into existing BigQuery resources, ensure precise mapping in Datastream:
dataset_id
in your single_target_dataset
configuration exactly matches the existing dataset name in BigQuery (including the project ID if applicable). Datastream automatically creates BigQuery tables with the same names as your MySQL tables, so no explicit table configuration is needed here.data_freshness
setting (900 seconds) and backfill_all
choice are generally sound. Ensure these align with your requirements for data consistency and historical data replication.Case 1:
bigquery_destination_config {
data_freshness = "900s"
single_target_dataset {
dataset_id = "sample:ss_v2_db" // Potential issue: Should likely be just 'ss_v2_db'
}
}
dataset_id
should typically be just the dataset name itself (e.g., "ss_v2_db"). The "sample:" prefix might be a typo, as Google Cloud dataset IDs typically don't use colons except in fully qualified resource identifiers.Case 2: Creating New Datasets and Tables
To automatically create BigQuery datasets and tables during replication:
location
within dataset_template
(under source_hierarchy_datasets
) matches your desired BigQuery region. Inconsistent locations will lead to errors.source_hierarchy_datasets
is correct for this purpose. Datastream will mirror the MySQL schema hierarchy in BigQuery, creating datasets and tables as needed.Case 2:
bigquery_destination_config {
source_hierarchy_datasets {
dataset_template {
location = var.gcp_region // Ensure this is a valid BigQuery region
}
}
}
var.gcp_region
resolves to a valid BigQuery location (e.g., "US", "EU").Recommendations:
roles/bigquery.dataEditor
roles/bigquery.datasetAdmin
(if creating new datasets)roles/bigquery.jobUser
Hi @Nikita_G It looks like the issue is related to connectivity between Google DataStream and your Cloud SQL Private MySQL instance. Since you're using a private instance, here are a few things you might want to check to resolve the problem:
1️⃣ Check VPC and Subnet Configuration
🔹 Make sure that Cloud SQL and DataStream are on the same VPC or that there’s a proper connection established between them.
2️⃣ Review IAM Permissions
🔹 Google DataStream requires the right permissions to access Cloud SQL. Double-check that the service account has the necessary access.
3️⃣ Enable Private Access
🔹 Since the IP 192.168.58.84 appears to be a private address, ensure that you've properly configured a Cloud SQL Private IP and that DataStream has access to it.
4️⃣ Check Firewall Rules
🔹 Verify that the required ports are open in your VPC firewall rules. For MySQL, the default port is 3306.
5️⃣ Test Connectivity from a VM
🔹 Try connecting to the Cloud SQL instance from a Compute Engine VM within the same network. This can help identify if the issue is related to network connectivity.
Looking for an Easier Alternative?
If you need to move data from Cloud SQL to BigQuery or other platforms without dealing with complex Google DataStream configurations, you might want to explore Windsor.ai. It simplifies data integration and automation without requiring advanced network infrastructure management.
Hope this helps!